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Throughout all rings will be associative with identity element and all
modules will be unital right modules.

@ A non-zero R-module M is called a prime module if
anng(M) = anng(K) for every non-zero submodule K of M.

@ A proper submodule N of a module M is called a prime submodule
of M if M/N is a prime module.

@ If N is a prime submodule of a module M, then p = anng(M/N) is a
prime ideal of R and N is called p-prime submodule of M.
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S. Yassemi introduced second submodules of modules over commutative
rings as the dual notion of prime submodules.

@ A non zero R-module M is called a second module if
anng (M) =anng(M/N) for every proper submodule N of M.

@ A submodule N is called a second submodule if N is sumodule of M
and second R—module, then .

@ If N is a second submodule of a module M, then anng(N) = P is a
prime ideal of R and in this case N is called a P-second submodule
of M.

@ The set of all second submodules of a module M is called the second
spectrum of M and denoted by X° = Spec®*(M).
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@ For a submodule N,
Ve (N) = {S € Spec*(M) : anng(N) C anng(S)} and
Z*(M) ={Vs(N): N < M}.

@ The dual Zariski topology on Spec®(M) is the topology T° described
by taking the set Z°(M) as the set of closed subsets of Spec®(M)
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Throughout the rest of the paper we assume that Spec®(M) # @ for
an R-module M.

For a prime ideal p of R, Spec; (M) will denote the set of all
p-second submodules of M.

The map ¢° : Spec®(M) — Spec(R) defined by ¢°(S) = anng(S)
is called the natural map of Spec®(M).

M is said to be secondful if the natural map ¢° is surjective.
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Lemma

[2] The following statements are equivalent for an R-module M.
Q The natural map §° :Spec® (M) — Spec(R) is injective.
@ Forany 51, S; €Speci(M), if V°(S1) = V5(S,) then S; = S,.
Q |[Spec;, (M) |< 1 for every p €Spec(R).
Q (Spect(M), 1) is a Ty-space.
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Lemma

[2] The following statements are equivalent for an R-module M.
@ The natural map ° :Spec®(M) — Spec(R) is injective.
@ Forany 51, S; €Speci(M), if V°(S1) = V5(S,) then S; = S,.
Q |[Spec;, (M) |< 1 for every p €Spec(R).
Q (Spect(M), 1) is a Ty-space.

An R-module M is said to be X*-injective if it satisfies one of the
equivalent condition in Lemma.
It is well known that every comultiplication module is X*-injective.
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Let div(Mg) denote the sum of all divisible submodules of the R-module
M.

In the following Theorem, we characterize X*-injective modules in terms of
divisible submodules.

Let M be an R-module. Then M is an X*-injective R-module if and only
if S =div((0 :p p)r/p) for every p-second submodule S of M.
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Corollary

Let M be an X*-injective R-module. Then:
o Spec’(M) = {div((0:m p)r/p) : P € V(anng(M)),

div((0:m p)) # 0}.
Min(M) = {(0:p p) : p EMax(R), (0:y p) # 0}.
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Corollary

Let M be an X*-injective R-module. Then:
o Spec*(M) = {div((0 :m p)r/p) : p € V(anng(M)),
div((0:m p)) # 0}
Min(M) = {(0:p p) : p EMax(R), (0:y p) # 0}.
@ If M is secondful, then

Spec®(M) = {div((0 :p p)ryp) : p € V(anng(M))}.
Min(M) ={(0:y p): p € V(annR(I\/l))ﬂl\/Iax(R)}.
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Corollary

Let M be an X*-injective R-module. Then:

o Spec*(M) = {div((0 :m p)r/p) : p € V(anng(M)),
div((0:m p)) # 0}.
Min(M) = {(0:p p) : p EMax(R), (0:y p) # 0}.
o If M is secondful, then
Spec®(M) = {div((0 :p p)ryp) : p € V(anng(M))}.
Min(M) = {(0:p p) : p € V(anng(M))NMax(R)}.
o If R is a one-dimensional domain and M is a faithful secondful
R-module, then
Spect (M) = {(0:y p) : p EMax(R)} U{div(Mg)}.
Min(M) = {(0:p p) : p EMax(R)}.
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In the following theorem, we deal with the maximal second submodules of
an X?®-injective module.

Theorem

Let M be an X*-injective R-module.

@Q Suppose that R is a one-dimensional integral domain and
S €Spec;, (M) where p is a non-zero prime ideal of R. Then S is a
maximal second submodule of M if and only if S Zdiv(Mg).
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In the following theorem, we deal with the maximal second submodules of
an X?®-injective module.

Theorem

Let M be an X*-injective R-module.

@ Suppose that R is a one-dimensional integral domain and
S GSpeC;(I\/I) where p is a non-zero prime ideal of R. Then S is a
maximal second submodule of M if and only if S Z div(Mg).

Q Let N be a submodule of M and S €Spec,(M) N V*(N) such that p
is a minimal prime ideal of anng(N). Then S is a maximal second
submodule of N.

In particular, S is a maximal second submodule of sec(N).
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An R-module M is said to be a weak comultiplication module if M does

not have any second submodule or for every second submodule S of M,
S=1(0:m 1), where I is an ideal of R.

Then the following are true.

Q /f M is a weak comultiplication module, then M is X*-injective.
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An R-module M is said to be a weak comultiplication module if M does

not have any second submodule or for every second submodule S of M,
S=1(0:m 1), where I is an ideal of R.

Then the following are true.

Q If M is a weak comultiplication module, then M is X*®-injective.

@Q I/f M is an injective R-module, then M is an X*°-injective R-module if
and only if M is a weak comultiplication R-module.
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An R-module M is said to be a weak comultiplication module if M does
not have any second submodule or for every second submodule S of M,
S=1(0:m 1), where I is an ideal of R.

Theorem

Then the following are true.

Q If M is a weak comultiplication module, then M is X*®-injective.

@ If M is an injective R-module, then M is an X*-injective R-module if
and only if M is a weak comultiplication R-module.
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An R-module M is said to be a weak comultiplication module if M does
not have any second submodule or for every second submodule S of M,
S=1(0:m 1), where I is an ideal of R.

Then the following are true.

Q If M is a weak comultiplication module, then M is X*®-injective.

@ If M is an injective R-module, then M is an X*-injective R-module if
and only if M is a weak comultiplication R-module.

The following example shows that the converse of Theorem-(1) is not true
in general.

Let p be a prime integer and M denote the Z-module Q & Z,. Then M is
an X*-injective R-module but M is not a weak comultiplication Z-module.
Indeed, the second submodule Q & 0 is not equal to (0 :p /) for some
ideal / of Z.
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Let R be a one-dimensional domain and M be an R-module. Then M is
an X*-injective R-module and M is either divisible or div(Mg) = 0 if and
only if M is a weak comultiplication R-module.
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Noetherian topological space

A topological space Y is said to be Noetherian if the open subsets of Y
satisfy the ascending chain condition.

It is well-known that if Y is a Noetherian topological space, then every
subspace of Y is quasi-compact.

Theorem

Let M be an R-module. Then (Spec®(M), t%) is Noetherian in each of the
following cases.
(1) R satisfies ascending chain condition on radical ideals.
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Noetherian topological space

A topological space Y is said to be Noetherian if the open subsets of Y
satisfy the ascending chain condition.

It is well-known that if Y is a Noetherian topological space, then every
subspace of Y is quasi-compact.

Theorem

Let M be an R-module. Then (Spec®(M), t%) is Noetherian in each of the
following cases.

(1) R satisfies ascending chain condition on radical ideals.

(2) M satisfies descending chain condition on the submodules of the form
(0:p 1), where | is an ideal of R.

Let M be an R-module. If Spec(R) is a Noetherian topological space,
then (Spec’(M), T°) is a Noetherian space.
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@ A topological space X is called irreducible if X # @ and every finite
intersection of non-empty open sets of X is non-empty.
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@ A topological space X is called irreducible if X # @ and every finite
intersection of non-empty open sets of X is non-empty.

@ A maximal irreducible subspace of X is called an irreducible
component.
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Let R be a Dedekind domain and M be an R-module such that M is an
X*-injective R-module. Then we have the following.

@ (Spec’(M), T°) is a Noetherian topological space.
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Let R be a Dedekind domain and M be an R-module such that M is an
X*-injective R-module. Then we have the following.

@ (Spec(M), T°) is a Noetherian topological space.
@ (Spec*(M), T°) is a Ty-space if and only if T = T/ where T/ is the
finite complement topology.
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Let R be a Dedekind domain and M be an R-module such that M is an
X*-injective R-module. Then we have the following.

@ (Spec(M), T°) is a Noetherian topological space.
Q (Spec’(M), T°) is a Ty-space if and only if T° = /¢ where T/ is the
finite complement topology.

© If Spec®(M) is finite, then (Spec®(M), T°) is a Ty-space if and only if

it is a T-space.
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Let R be a Dedekind domain and M be an R-module such that M is an
X*-injective R-module. Then we have the following.
@ (Spec(M), T°) is a Noetherian topological space.
Q (Spec’(M), T°) is a Ty-space if and only if T° = /¢ where T/ is the
finite complement topology.

@ If Spec®(M) is finite, then (Spec®(M), T°) is a Ty-space if and only if

it is a T-space.

Q If Spec®(M) is infinite, then (Spec®(M), T°) is irreducible but not Ts.

4
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A spectral space

A topological space X is said to be a spectral space if X is homeomorphic
to Spec(S), with the Zariski topology, for some commutative ring S.

Let Y be a closed subset of a topological space. An element y € Y is
called a generic point of Y if Y = c/({y}).

If the topological space is a Tp-space, then the generic point of an
irreducible closed subset Y of a topological space is unique.
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Spectral spaces were characterized by Hochster [6, p. 52, Proposition 4] as

the topological spaces X which satisfy the following conditions:
Q X is a Ty-space;
@ X is compact and has a basis of compact open subsets;

© The family of compact open subsets of X is closed under finite
intersections;

@ Every irreducible closed subset of X has a generic point.
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Theorem

Let R be a Dedekind domain and M an X®-injective R-module. Then
(Spec’ (M), T°) is a spectral space if and only if Spec® (M) is finite or
div(Mg) # 0.

Theorem

| A

Let M be an R-module. Then every irreducible closed subset of
(Spec (M), T%) has a generic point in each of the following cases;
a)R is a zero-dimensional ring.
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Theorem

Let R be a Dedekind domain and M an X®-injective R-module. Then
(Spec’ (M), T°) is a spectral space if and only if Spec® (M) is finite or
div(Mg) # 0.

| A

Theorem

Let M be an R-module. Then every irreducible closed subset of
(Spec (M), T%) has a generic point in each of the following cases;
a)R is a zero-dimensional ring.

b) R is a one-dimensional integral domain and M has at least one
0-second submodule.
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Theorem

Let M be an R-module.

Q@ Assume that R is a ring with Noetherian spectrum and M is an
injective R-module. Then (Spec®(M), T°) is a spectral space if and
only if it is To-space.
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Theorem

Let M be an R-module.

@ Assume that R is a ring with Noetherian spectrum and M is an
injective R-module. Then (Spec®(M), T°) is a spectral space if and
only if it is To-space.

@ Assume that R is a one-dimensional integral domain, M has at least
one 0-second submodule and (Spec® (M), T°) is a Noetherian space.
Then (Spec®(M), T°) is a spectral space if and only if it is Ty-space.
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Theorem

Let M be an R-module.

@ Assume that R is a ring with Noetherian spectrum and M is an
injective R-module. Then (Spec®(M), T°) is a spectral space if and
only if it is Ty-space.

@ Assume that R is a one-dimensional integral domain, M has at least
one 0-second submodule and (Spec®(M), T°) is a Noetherian space.
Then (Spec®(M), T°) is a spectral space if and only if it is Ty-space.

© If R is a one-dimensional integral domain with Noetherian spectrum
and M is a divisible weak comultiplication R-module, then
(Spec®(M), T%) is a spectral space.
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Combinatorial Dimension

Let T be a topological space. We consider strictly decreasing (or strictly
increasing) chain Zy, Zi, ..., Z, of length r of irreducible closed subsets Z;
of T.

The supremum of the lengths taken over all such chains is called the
combinatorial dimension of T and denoted by dim 7. For the empty set
@, the combinatorial dimension of @ is defined to be —1 [5,
Definitions/Remarks 5.5].
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Let M be a secondful R-module and N be a submodule of M. Let Y be a
non-empty subset of the closed set V*(N). Then
Y is an irreducible closed subset of V*(N) if and only if Y = V*(S) for

some S € V*(N).
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Let M be a secondful R-module, N be a submodule of M. Then:

@ The mapping 0 : S —— V*°(S) is a surjection of V*(N) onto the set
of irreducible closed subset of V*(N).
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Let M be a secondful R-module, N be a submodule of M. Then:
@ The mapping 0 : S —— V*(S) is a surjection of V*(N) onto the set
of irreducible closed subset of V*(N).
@ The mapping ¢ : V*(S) —— anng(S) is a bijection of the set of
irreducible components of V*(N) onto the set of minimal prime ideals
of anng(N) in R.

v
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We recall two well-known facts of Noetherian spaces: (i) every subspace of
a Noetherian space is Noetherian, and (ii) every Noetherian space has only
finitely many irreducible components [3, p. 123, Proposition 8-(i)], [3, p.
124, Proposition 10]. By using these facts and Theorem, we obtain the
following theorem.

Let M be a secondful R-module. Then, every closed subset of

(Spec® (M), T°) has a finite number of irreducible components if and only
if, for every N < M, the ideal anng(N) has a finite number of minimal
prime ideals in R.
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Let M be a secondful R-module. Then (Spec®(M), T%) has a chain of
irreducible closed subsets of length r if and only if R has a chain of prime
ideals of length r.

Let M be a secondful R-module. Then the Sombinatorial dimension of
(Spec’(M), T°) and the Krull dimension of R are all equal.
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Let M be a secondful R-module.

Q@ The following are equivalent:
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Let M be a secondful R-module.

Q@ The following are equivalent:

@ dim(R)=0
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Let M be a secondful R-module.

Q@ The following are equivalent:

0 dim(R)=0
@ dim(Spec(M),t°) =0
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Let M be a secondful R-module.

Q@ The following are equivalent:
0 dim(R)=0
@ dim(Spec(M),t°) =0
@ Every irreducible closed subset of (Spec® (M), T°) is an irreducible
component of (Spec®(M), T°).
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Let M be a secondful R-module.

Q@ The following are equivalent:
0 dim(R)=0
@ dim(Spec(M),t°) =0
© Every irreducible closed subset of (Spec® (M), T°) is an irreducible
component of (Spec®(M), T°).
@ Forevery p € V(anng(M)) and for every p-second submodule S of
M, Spec, (M) = V*(S).
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Let M be a secondful R-module.

o

2]

The following are equivalent:

0 dim(R)=0

@ dim(Spec(M),t°) =0

© Every irreducible closed subset of (Spec® (M), T°) is an irreducible
component of (Spec®(M), T°).

@ Forevery p € V(anng(M)) and for every p-second submodule S of
M, Spec, (M) = V*(S).

If one of the equivalent conditions in part (1) is satisfied and
(Spec* (M), T°) is a Noetherian space, then the set of irreducible
components of (Spec*(M), T%) is
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Let M be a secondful R-module.

o

2]

The following are equivalent:

0 dim(R)=0

@ dim(Spec(M),t°) =0

© Every irreducible closed subset of (Spec® (M), T°) is an irreducible
component of (Spec®(M), T°).

@ Forevery p € V(anng(M)) and for every p-second submodule S of
M, Spec, (M) = V*(S).

If one of the equivalent conditions in part (1) is satisfied and
(Spec’ (M), T°) is a Noetherian space, then the set of irreducible
components of (Spec® (M), T°) is
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Let M be a secondful R-module.

o

2]

The following are equivalent:

0 dim(R)=0

@ dim(Spec(M),t°) =0

© Every irreducible closed subset of (Spec® (M), T°) is an irreducible
component of (Spec®(M), T°).

@ Forevery p € V(anng(M)) and for every p-second submodule S of
M, Spec, (M) = V*(S).

If one of the equivalent conditions in part (1) is satisfied and
(Spec’ (M), T°) is a Noetherian space, then the set of irreducible
components of (Spec® (M), T°) is
{Ve((0:p my)), ..., Vo((0:p my))} for some k € Z, where the
mj, for i = 1,..., k are all the minimal prime ideals of anng(M).
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Thank you for your attentions.
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