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Throughout all rings will be associative with identity element and all
modules will be unital right modules.

A non-zero R-module M is called a prime module if
annR (M) = annR (K ) for every non-zero submodule K of M.

A proper submodule N of a module M is called a prime submodule
of M if M/N is a prime module.
If N is a prime submodule of a module M, then p = annR (M/N) is a
prime ideal of R and N is called p-prime submodule of M.
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S. Yassemi introduced second submodules of modules over commutative
rings as the dual notion of prime submodules.

A non zero R-module M is called a second module if
annR (M) =annR (M/N) for every proper submodule N of M.
A submodule N is called a second submodule if N is sumodule of M
and second R�module, then .

If N is a second submodule of a module M, then annR (N) = P is a
prime ideal of R and in this case N is called a P-second submodule
of M.

The set of all second submodules of a module M is called the second
spectrum of M and denoted by X s = Specs (M).
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For a submodule N,
V s (N) = fS 2 Specs (M) : annR (N) � annR (S)g and
Z s (M) = fV s (N) : N � Mg.
The dual Zariski topology on Specs (M) is the topology τs described
by taking the set Z s (M) as the set of closed subsets of Specs (M)
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Throughout the rest of the paper we assume that Specs (M) 6= ∅ for
an R-module M.

For a prime ideal p of R, Specsp(M) will denote the set of all
p-second submodules of M.

The map ψs : Specs (M) �! Spec(R) de�ned by ψs (S) = annR (S)
is called the natural map of Specs (M).
M is said to be secondful if the natural map ψs is surjective.
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Lemma

[2]The following statements are equivalent for an R-module M.

1 The natural map ψs :Specs (M) �!Spec(R) is injective.
2 For any S1, S2 2Specs (M), if V s (S1) = V s (S2) then S1 = S2.
3 jSpecsp(M) j� 1 for every p 2Spec(R).
4 (Specs (M), τs ) is a T0-space.

An R-module M is said to be X s -injective if it satis�es one of the
equivalent condition in Lemma.
It is well known that every comultiplication module is X s -injective.
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Let div(MR ) denote the sum of all divisible submodules of the R-module
M.
In the following Theorem, we characterize X s -injective modules in terms of
divisible submodules.

Theorem

Let M be an R-module. Then M is an X s -injective R-module if and only
if S =div((0 :M p)R/P ) for every p-second submodule S of M.
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Corollary

Let M be an X s -injective R-module. Then:

Specs (M) = fdiv((0 :M p)R/p) : p 2 V (annR (M)),
div((0 :M p)) 6= 0g.
Min(M) = f(0 :M p) : p 2Max(R), (0 :M p) 6= 0g.

If M is secondful, then
Specs (M) = fdiv((0 :M p)R/p) : p 2 V (annR (M))g.
Min(M) = f(0 :M p) : p 2 V (annR (M))\Max(R)g.
If R is a one-dimensional domain and M is a faithful secondful
R-module, then
Specs (M) = f(0 :M p) : p 2Max(R)g [ fdiv(MR )g.
Min(M) = f(0 :M p) : p 2Max(R)g.
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In the following theorem, we deal with the maximal second submodules of
an X s -injective module.

Theorem

Let M be an X s -injective R-module.

1 Suppose that R is a one-dimensional integral domain and
S 2Specsp(M) where p is a non-zero prime ideal of R. Then S is a
maximal second submodule of M if and only if S 6�div(MR ).

2 Let N be a submodule of M and S 2Specsp(M) \ V s (N) such that p
is a minimal prime ideal of annR (N). Then S is a maximal second
submodule of N.
In particular, S is a maximal second submodule of sec(N).
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An R-module M is said to be a weak comultiplication module if M does
not have any second submodule or for every second submodule S of M,
S = (0 :M I ), where I is an ideal of R.

Theorem

Then the following are true.

1 If M is a weak comultiplication module, then M is X s -injective.

2 If M is an injective R-module, then M is an X s -injective R-module if
and only if M is a weak comultiplication R-module.

The following example shows that the converse of Theorem-(1) is not true
in general.

Example
Let p be a prime integer and M denote the Z-module Q�Zp . Then M is
an X s -injective R-module but M is not a weak comultiplication Z-module.
Indeed, the second submodule Q� 0 is not equal to (0 :M I ) for some
ideal I of Z.
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Theorem

Let R be a one-dimensional domain and M be an R-module. Then M is
an X s -injective R-module and M is either divisible or div(MR ) = 0 if and
only if M is a weak comultiplication R-module.
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Noetherian topological space

A topological space Y is said to be Noetherian if the open subsets of Y
satisfy the ascending chain condition.
It is well-known that if Y is a Noetherian topological space, then every
subspace of Y is quasi-compact.

Theorem

Let M be an R-module. Then (Specs (M), τs ) is Noetherian in each of the
following cases.
(1) R satis�es ascending chain condition on radical ideals.

(2) M satis�es descending chain condition on the submodules of the form
(0 :M I ), where I is an ideal of R.

Corollary

Let M be an R-module. If Spec(R) is a Noetherian topological space,
then (Specs (M), τs ) is a Noetherian space.
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A topological space X is called irreducible if X 6= ∅ and every �nite
intersection of non-empty open sets of X is non-empty.

A maximal irreducible subspace of X is called an irreducible
component.
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Theorem

Let R be a Dedekind domain and M be an R-module such that M is an
X s -injective R-module. Then we have the following.

1 (Specs (M), τs ) is a Noetherian topological space.

2 (Specs (M), τs ) is a T1-space if and only if τs = τfc where τfc is the
�nite complement topology.

3 If Specs (M) is �nite, then (Specs (M), τs ) is a T1-space if and only if
it is a T2-space.

4 If Specs (M) is in�nite, then (Specs (M), τs ) is irreducible but not T2.
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A spectral space

A topological space X is said to be a spectral space if X is homeomorphic
to Spec(S), with the Zariski topology, for some commutative ring S .
Let Y be a closed subset of a topological space. An element y 2 Y is
called a generic point of Y if Y = cl(fyg).
If the topological space is a T0-space, then the generic point of an
irreducible closed subset Y of a topological space is unique.
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Spectral spaces were characterized by Hochster [6, p. 52, Proposition 4] as
the topological spaces X which satisfy the following conditions:

1 X is a T0-space;
2 X is compact and has a basis of compact open subsets;
3 The family of compact open subsets of X is closed under �nite
intersections;

4 Every irreducible closed subset of X has a generic point.
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Theorem

Let R be a Dedekind domain and M an X s -injective R-module. Then
(Specs (M), τs ) is a spectral space if and only if Specs (M) is �nite or
div(MR ) 6= 0.

Theorem
Let M be an R-module. Then every irreducible closed subset of
(Specs (M), τs ) has a generic point in each of the following cases;
a)R is a zero-dimensional ring.

b) R is a one-dimensional integral domain and M has at least one
0-second submodule.
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Theorem

Let M be an R-module.

1 Assume that R is a ring with Noetherian spectrum and M is an
injective R-module. Then (Specs (M), τs ) is a spectral space if and
only if it is T0-space.

2 Assume that R is a one-dimensional integral domain, M has at least
one 0-second submodule and (Specs (M), τs ) is a Noetherian space.
Then (Specs (M), τs ) is a spectral space if and only if it is T0-space.

3 If R is a one-dimensional integral domain with Noetherian spectrum
and M is a divisible weak comultiplication R-module, then
(Specs (M), τs ) is a spectral space.
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Combinatorial Dimension

Let T be a topological space. We consider strictly decreasing (or strictly
increasing) chain Z0,Z1, ...,Zr of length r of irreducible closed subsets Zi
of T .
The supremum of the lengths taken over all such chains is called the
combinatorial dimension of T and denoted by dimT . For the empty set
∅, the combinatorial dimension of ∅ is de�ned to be �1 [5,
De�nitions/Remarks 5.5].
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Lemma

Let M be a secondful R-module and N be a submodule of M. Let Y be a
non-empty subset of the closed set V s (N). Then
Y is an irreducible closed subset of V s (N) if and only if Y = V s (S) for
some S 2 V s (N).
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Theorem
Let M be a secondful R-module, N be a submodule of M. Then:

1 The mapping $ : S 7�! V s (S) is a surjection of V s (N) onto the set
of irreducible closed subset of V s (N).

2 The mapping ϕ : V s (S) 7�! annR (S) is a bijection of the set of
irreducible components of V s (N) onto the set of minimal prime ideals
of annR (N) in R.
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We recall two well-known facts of Noetherian spaces: (i) every subspace of
a Noetherian space is Noetherian, and (ii) every Noetherian space has only
�nitely many irreducible components [3, p. 123, Proposition 8-(i)], [3, p.
124, Proposition 10]. By using these facts and Theorem, we obtain the
following theorem.

Theorem
Let M be a secondful R-module. Then, every closed subset of
(Specs (M), τs ) has a �nite number of irreducible components if and only
if, for every N � M, the ideal annR (N) has a �nite number of minimal
prime ideals in R.
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Theorem
Let M be a secondful R-module. Then (Specs (M), τs ) has a chain of
irreducible closed subsets of length r if and only if R has a chain of prime
ideals of length r .

Corollary

Let M be a secondful R-module. Then the combinatorial dimension of
(Specs (M), τs ) and the Krull dimension of R are all equal.
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Theorem

Let M be a secondful R-module.

1 The following are equivalent:

1 dim(R) = 0
2 dim(Specs (M), τs ) = 0
3 Every irreducible closed subset of (Specs (M), τs ) is an irreducible
component of (Specs (M), τs ).

4 For every p 2 V (annR (M)) and for every p-second submodule S of
M, Specsp(M) = V

s (S).

2 If one of the equivalent conditions in part (1) is satis�ed and
(Specs (M), τs ) is a Noetherian space, then the set of irreducible
components of (Specs (M), τs ) is

fV s ((0 :M m1)), ...,V s ((0 :M mk ))g for some k 2 Z+, where the
mi , for i = 1, ..., k are all the minimal prime ideals of annR (M).
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Thank you for your attentions.
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